Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Uniform Convergence Rates for Maximum Likelihood Estimation under Two-Component Gaussian Mixture Models (2006.00704v1)

Published 1 Jun 2020 in math.ST, stat.ML, and stat.TH

Abstract: We derive uniform convergence rates for the maximum likelihood estimator and minimax lower bounds for parameter estimation in two-component location-scale Gaussian mixture models with unequal variances. We assume the mixing proportions of the mixture are known and fixed, but make no separation assumption on the underlying mixture components. A phase transition is shown to exist in the optimal parameter estimation rate, depending on whether or not the mixture is balanced. Key to our analysis is a careful study of the dependence between the parameters of location-scale Gaussian mixture models, as captured through systems of polynomial equalities and inequalities whose solution set drives the rates we obtain. A simulation study illustrates the theoretical findings of this work.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube