Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

F-IVM: Learning over Fast-Evolving Relational Data (2006.00694v1)

Published 1 Jun 2020 in cs.DB

Abstract: F-IVM is a system for real-time analytics such as machine learning applications over training datasets defined by queries over fast-evolving relational databases. We will demonstrate F-IVM for three such applications: model selection, Chow-Liu trees, and ridge linear regression.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com