Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Estimating Principal Components under Adversarial Perturbations (2006.00602v2)

Published 31 May 2020 in cs.LG, cs.DS, and stat.ML

Abstract: Robustness is a key requirement for widespread deployment of machine learning algorithms, and has received much attention in both statistics and computer science. We study a natural model of robustness for high-dimensional statistical estimation problems that we call the adversarial perturbation model. An adversary can perturb every sample arbitrarily up to a specified magnitude $\delta$ measured in some $\ell_q$ norm, say $\ell_\infty$. Our model is motivated by emerging paradigms such as low precision machine learning and adversarial training. We study the classical problem of estimating the top-$r$ principal subspace of the Gaussian covariance matrix in high dimensions, under the adversarial perturbation model. We design a computationally efficient algorithm that given corrupted data, recovers an estimate of the top-$r$ principal subspace with error that depends on a robustness parameter $\kappa$ that we identify. This parameter corresponds to the $q \to 2$ operator norm of the projector onto the principal subspace, and generalizes well-studied analytic notions of sparsity. Additionally, in the absence of corruptions, our algorithmic guarantees recover existing bounds for problems such as sparse PCA and its higher rank analogs. We also prove that the above dependence on the parameter $\kappa$ is almost optimal asymptotically, not just in a minimax sense, but remarkably for every instance of the problem. This instance-optimal guarantee shows that the $q \to 2$ operator norm of the subspace essentially characterizes the estimation error under adversarial perturbations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.