Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transferring Inductive Biases through Knowledge Distillation (2006.00555v3)

Published 31 May 2020 in cs.LG, cs.AI, and stat.ML

Abstract: Having the right inductive biases can be crucial in many tasks or scenarios where data or computing resources are a limiting factor, or where training data is not perfectly representative of the conditions at test time. However, defining, designing and efficiently adapting inductive biases is not necessarily straightforward. In this paper, we explore the power of knowledge distillation for transferring the effect of inductive biases from one model to another. We consider families of models with different inductive biases, LSTMs vs. Transformers and CNNs vs. MLPs, in the context of tasks and scenarios where having the right inductive biases is critical. We study the effect of inductive biases on the solutions the models converge to and investigate how and to what extent the effect of inductive biases is transferred through knowledge distillation, in terms of not only performance but also different aspects of converged solutions.

Citations (51)

Summary

We haven't generated a summary for this paper yet.