Papers
Topics
Authors
Recent
2000 character limit reached

Integrating global spatial features in CNN based Hyperspectral/SAR imagery classification (2006.00234v2)

Published 30 May 2020 in cs.LG, cs.CV, eess.IV, and stat.ML

Abstract: The land cover classification has played an important role in remote sensing because it can intelligently identify things in one huge remote sensing image to reduce the work of humans. However, a lot of classification methods are designed based on the pixel feature or limited spatial feature of the remote sensing image, which limits the classification accuracy and universality of their methods. This paper proposed a novel method to take into the information of remote sensing image, i.e., geographic latitude-longitude information. In addition, a dual-branch convolutional neural network (CNN) classification method is designed in combination with the global information to mine the pixel features of the image. Then, the features of the two neural networks are fused with another fully neural network to realize the classification of remote sensing images. Finally, two remote sensing images are used to verify the effectiveness of our method, including hyperspectral imaging (HSI) and polarimetric synthetic aperture radar (PolSAR) imagery. The result of the proposed method is superior to the traditional single-channel convolutional neural network.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.