Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Deep convolutional tensor network (2005.14506v2)

Published 29 May 2020 in cs.LG and stat.ML

Abstract: Neural networks have achieved state of the art results in many areas, supposedly due to parameter sharing, locality, and depth. Tensor networks (TNs) are linear algebraic representations of quantum many-body states based on their entanglement structure. TNs have found use in machine learning. We devise a novel TN based model called Deep convolutional tensor network (DCTN) for image classification, which has parameter sharing, locality, and depth. It is based on the Entangled plaquette states (EPS) TN. We show how EPS can be implemented as a backpropagatable layer. We test DCTN on MNIST, FashionMNIST, and CIFAR10 datasets. A shallow DCTN performs well on MNIST and FashionMNIST and has a small parameter count. Unfortunately, depth increases overfitting and thus decreases test accuracy. Also, DCTN of any depth performs badly on CIFAR10 due to overfitting. It is to be determined why. We discuss how the hyperparameters of DCTN affect its training and overfitting.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.