Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 63 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Agnostic Learning of a Single Neuron with Gradient Descent (2005.14426v3)

Published 29 May 2020 in cs.LG, math.OC, and stat.ML

Abstract: We consider the problem of learning the best-fitting single neuron as measured by the expected square loss $\mathbb{E}_{(x,y)\sim \mathcal{D}}[(\sigma(w\top x)-y)2]$ over some unknown joint distribution $\mathcal{D}$ by using gradient descent to minimize the empirical risk induced by a set of i.i.d. samples $S\sim \mathcal{D}n$. The activation function $\sigma$ is an arbitrary Lipschitz and non-decreasing function, making the optimization problem nonconvex and nonsmooth in general, and covers typical neural network activation functions and inverse link functions in the generalized linear model setting. In the agnostic PAC learning setting, where no assumption on the relationship between the labels $y$ and the input $x$ is made, if the optimal population risk is $\mathsf{OPT}$, we show that gradient descent achieves population risk $O(\mathsf{OPT})+\epsilon$ in polynomial time and sample complexity when $\sigma$ is strictly increasing. For the ReLU activation, our population risk guarantee is $O(\mathsf{OPT}{1/2})+\epsilon$. When labels take the form $y = \sigma(v\top x) + \xi$ for zero-mean sub-Gaussian noise $\xi$, we show that the population risk guarantees for gradient descent improve to $\mathsf{OPT} + \epsilon$. Our sample complexity and runtime guarantees are (almost) dimension independent, and when $\sigma$ is strictly increasing, require no distributional assumptions beyond boundedness. For ReLU, we show the same results under a nondegeneracy assumption for the marginal distribution of the input.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.