Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heatmap-Based Method for Estimating Drivers' Cognitive Distraction (2005.14136v2)

Published 28 May 2020 in cs.HC, cs.CV, and q-bio.NC

Abstract: In order to increase road safety, among the visual and manual distractions, modern intelligent vehicles need also to detect cognitive distracted driving (i.e., the drivers mind wandering). In this study, the influence of cognitive processes on the drivers gaze behavior is explored. A novel image-based representation of the driver's eye-gaze dispersion is proposed to estimate cognitive distraction. Data are collected on open highway roads, with a tailored protocol to create cognitive distraction. The visual difference of created shapes shows that a driver explores a wider area in neutral driving compared to distracted driving. Thus, support vector machine (SVM)-based classifiers are trained, and 85.2% of accuracy is achieved for a two-class problem, even with a small dataset. Thus, the proposed method has the discriminative power to recognize cognitive distraction using gaze information. Finally, this work details how this image-based representation could be useful for other cases of distracted driving detection.

Citations (6)

Summary

We haven't generated a summary for this paper yet.