Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 89 tok/s
Gemini 3.0 Pro 56 tok/s
Gemini 2.5 Flash 158 tok/s Pro
Kimi K2 198 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust estimation via generalized quasi-gradients (2005.14073v1)

Published 28 May 2020 in stat.ML, cs.LG, eess.SP, math.ST, stat.CO, and stat.TH

Abstract: We explore why many recently proposed robust estimation problems are efficiently solvable, even though the underlying optimization problems are non-convex. We study the loss landscape of these robust estimation problems, and identify the existence of "generalized quasi-gradients". Whenever these quasi-gradients exist, a large family of low-regret algorithms are guaranteed to approximate the global minimum; this includes the commonly-used filtering algorithm. For robust mean estimation of distributions under bounded covariance, we show that any first-order stationary point of the associated optimization problem is an {approximate global minimum} if and only if the corruption level $\epsilon < 1/3$. Consequently, any optimization algorithm that aproaches a stationary point yields an efficient robust estimator with breakdown point $1/3$. With careful initialization and step size, we improve this to $1/2$, which is optimal. For other tasks, including linear regression and joint mean and covariance estimation, the loss landscape is more rugged: there are stationary points arbitrarily far from the global minimum. Nevertheless, we show that generalized quasi-gradients exist and construct efficient algorithms. These algorithms are simpler than previous ones in the literature, and for linear regression we improve the estimation error from $O(\sqrt{\epsilon})$ to the optimal rate of $O(\epsilon)$ for small $\epsilon$ assuming certified hypercontractivity. For mean estimation with near-identity covariance, we show that a simple gradient descent algorithm achieves breakdown point $1/3$ and iteration complexity $\tilde{O}(d/\epsilon2)$.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.