Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Using Source Code Density to Improve the Accuracy of Automatic Commit Classification into Maintenance Activities (2005.13904v1)

Published 28 May 2020 in cs.SE and cs.LG

Abstract: Source code is changed for a reason, e.g., to adapt, correct, or adapt it. This reason can provide valuable insight into the development process but is rarely explicitly documented when the change is committed to a source code repository. Automatic commit classification uses features extracted from commits to estimate this reason. We introduce source code density, a measure of the net size of a commit, and show how it improves the accuracy of automatic commit classification compared to previous size-based classifications. We also investigate how preceding generations of commits affect the class of a commit, and whether taking the code density of previous commits into account can improve the accuracy further. We achieve up to 89% accuracy and a Kappa of 0.82 for the cross-project commit classification where the model is trained on one project and applied to other projects. Models trained on single projects yield accuracies of up to 93% with a Kappa approaching 0.90. The accuracy of the automatic commit classification has a direct impact on software (process) quality analyses that exploit the classification, so our improvements to the accuracy will also improve the confidence in such analyses.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.