Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Time-dependent acoustic scattering from generalized impedance boundary conditions via boundary elements and convolution quadrature (2005.13880v1)

Published 28 May 2020 in math.NA and cs.NA

Abstract: Generalized impedance boundary conditions are effective, approximate boundary conditions that describe scattering of waves in situations where the wave interaction with the material involves multiple scales. In particular, this includes materials with a thin coating (with the thickness of the coating as the small scale) and strongly absorbing materials. For the acoustic scattering from generalized impedance boundary conditions, the approach taken here first determines the Dirichlet and Neumann boundary data from a system of time-dependent boundary integral equations with the usual boundary integral operators, and then the scattered wave is obtained from the Kirchhoff representation. The system of time-dependent boundary integral equations is discretized by boundary elements in space and convolution quadrature in time. The well-posedness of the problem and the stability of the numerical discretization rely on the coercivity of the Calder\'on operator for the Helmholtz equation with frequencies in a complex half-plane. Convergence of optimal order in the natural norms is proved for the full discretization. Numerical experiments illustrate the behaviour of the proposed numerical method.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.