Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Difficulty of Membership Inference Attacks (2005.13702v3)

Published 27 May 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Recent studies propose membership inference (MI) attacks on deep models, where the goal is to infer if a sample has been used in the training process. Despite their apparent success, these studies only report accuracy, precision, and recall of the positive class (member class). Hence, the performance of these attacks have not been clearly reported on negative class (non-member class). In this paper, we show that the way the MI attack performance has been reported is often misleading because they suffer from high false positive rate or false alarm rate (FAR) that has not been reported. FAR shows how often the attack model mislabel non-training samples (non-member) as training (member) ones. The high FAR makes MI attacks fundamentally impractical, which is particularly more significant for tasks such as membership inference where the majority of samples in reality belong to the negative (non-training) class. Moreover, we show that the current MI attack models can only identify the membership of misclassified samples with mediocre accuracy at best, which only constitute a very small portion of training samples. We analyze several new features that have not been comprehensively explored for membership inference before, including distance to the decision boundary and gradient norms, and conclude that deep models' responses are mostly similar among train and non-train samples. We conduct several experiments on image classification tasks, including MNIST, CIFAR-10, CIFAR-100, and ImageNet, using various model architecture, including LeNet, AlexNet, ResNet, etc. We show that the current state-of-the-art MI attacks cannot achieve high accuracy and low FAR at the same time, even when the attacker is given several advantages. The source code is available at https://github.com/shrezaei/MI-Attack.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.