Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Quantitative Survey of Communication Optimizations in Distributed Deep Learning (2005.13247v2)

Published 27 May 2020 in cs.DC, cs.LG, and cs.NI

Abstract: Nowadays, large and complex deep learning (DL) models are increasingly trained in a distributed manner across multiple worker machines, in which extensive communications between workers pose serious scaling problems. In this article, we present a quantitative survey of communication optimization techniques for data parallel distributed DL. We first identify the major communication challenges and classify the existing solutions into three levels, namely the learning algorithm, the system architecture, and the network infrastructure. We present the state-of-the-art communication optimization techniques and conduct a comparative study of seven common lossless distributed DL methods on a 32-GPU cluster with 100Gbps InfiniBand (IB). We show that (1) the DL models with low model intensity (such as BERT and BERT-Large) are difficult to scale out even with the best available lossless algorithm over 100Gbps IB; (2) the system architecture and scheduling algorithms have a critical impact on the scaling property. We conclude the article with discussions on the open issues for further investigations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.