Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse Identification of Nonlinear Dynamical Systems via Reweighted $\ell_1$-regularized Least Squares (2005.13232v1)

Published 27 May 2020 in stat.ML and cs.LG

Abstract: This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear dynamical systems from noisy state measurements. The method is inspired by the Sparse Identification of Nonlinear Dynamics (SINDy) approach of {\it [Brunton et al., PNAS, 113 (15) (2016) 3932-3937]}, which relies on two main assumptions: the state variables are known {\it a priori} and the governing equations lend themselves to sparse, linear expansions in a (nonlinear) basis of the state variables. The aim of this work is to improve the accuracy and robustness of SINDy in the presence of state measurement noise. To this end, a reweighted $\ell_1$-regularized least squares solver is developed, wherein the regularization parameter is selected from the corner point of a Pareto curve. The idea behind using weighted $\ell_1$-norm for regularization -- instead of the standard $\ell_1$-norm -- is to better promote sparsity in the recovery of the governing equations and, in turn, mitigate the effect of noise in the state variables. We also present a method to recover single physical constraints from state measurements. Through several examples of well-known nonlinear dynamical systems, we demonstrate empirically the accuracy and robustness of the reweighted $\ell_1$-regularized least squares strategy with respect to state measurement noise, thus illustrating its viability for a wide range of potential applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Alexandre Cortiella (3 papers)
  2. Kwang-Chun Park (2 papers)
  3. Alireza Doostan (62 papers)
Citations (68)

Summary

We haven't generated a summary for this paper yet.