Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Sparse Identification of Nonlinear Dynamical Systems via Reweighted $\ell_1$-regularized Least Squares (2005.13232v1)

Published 27 May 2020 in stat.ML and cs.LG

Abstract: This work proposes an iterative sparse-regularized regression method to recover governing equations of nonlinear dynamical systems from noisy state measurements. The method is inspired by the Sparse Identification of Nonlinear Dynamics (SINDy) approach of {\it [Brunton et al., PNAS, 113 (15) (2016) 3932-3937]}, which relies on two main assumptions: the state variables are known {\it a priori} and the governing equations lend themselves to sparse, linear expansions in a (nonlinear) basis of the state variables. The aim of this work is to improve the accuracy and robustness of SINDy in the presence of state measurement noise. To this end, a reweighted $\ell_1$-regularized least squares solver is developed, wherein the regularization parameter is selected from the corner point of a Pareto curve. The idea behind using weighted $\ell_1$-norm for regularization -- instead of the standard $\ell_1$-norm -- is to better promote sparsity in the recovery of the governing equations and, in turn, mitigate the effect of noise in the state variables. We also present a method to recover single physical constraints from state measurements. Through several examples of well-known nonlinear dynamical systems, we demonstrate empirically the accuracy and robustness of the reweighted $\ell_1$-regularized least squares strategy with respect to state measurement noise, thus illustrating its viability for a wide range of potential applications.

Citations (68)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.