Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Agent-Based Simulation of Collective Cooperation: From Experiment to Model (2005.12712v2)

Published 26 May 2020 in cs.MA and cs.CY

Abstract: Simulation models of pedestrian dynamics have become an invaluable tool for evacuation planning. Typically crowds are assumed to stream unidirectionally towards a safe area. Simulated agents avoid collisions through mechanisms that belong to each individual, such as being repelled from each other by imaginary forces. But classic locomotion models fail when collective cooperation is called for, notably when an agent, say a first-aid attendant, needs to forge a path through a densely packed group. We present a controlled experiment to observe what happens when humans pass through a dense static crowd. We formulate and test hypothesis on salient phenomena. We discuss our observations in a psychological framework. We derive a model that incorporates: agents' perception and cognitive processing of a situation that needs cooperation; selection from a portfolio of behaviours, such as being cooperative; and a suitable action, such as swapping places. Agents' ability to successfully get through a dense crowd emerges as an effect of the psychological model.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.