Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Personalized Fashion Recommendation from Personal Social Media Data: An Item-to-Set Metric Learning Approach (2005.12439v1)

Published 25 May 2020 in cs.CV, cs.IR, and cs.MM

Abstract: With the growth of online shopping for fashion products, accurate fashion recommendation has become a critical problem. Meanwhile, social networks provide an open and new data source for personalized fashion analysis. In this work, we study the problem of personalized fashion recommendation from social media data, i.e. recommending new outfits to social media users that fit their fashion preferences. To this end, we present an item-to-set metric learning framework that learns to compute the similarity between a set of historical fashion items of a user to a new fashion item. To extract features from multi-modal street-view fashion items, we propose an embedding module that performs multi-modality feature extraction and cross-modality gated fusion. To validate the effectiveness of our approach, we collect a real-world social media dataset. Extensive experiments on the collected dataset show the superior performance of our proposed approach.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.