Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Reputation (In)dependence in Ranking Systems: Demographics Influence Over Output Disparities (2005.12371v1)

Published 25 May 2020 in cs.IR

Abstract: Recent literature on ranking systems (RS) has considered users' exposure when they are the object of the ranking. Although items are the object of reputation-based RS, users have a central role also in this class of algorithms. Indeed, when ranking the items, user preferences are weighted by how relevant this user is in the platform (i.e., their reputation). In this paper, we formulate the concept of disparate reputation (DR) and study if users characterized by sensitive attributes systematically get a lower reputation, leading to a final ranking that reflects less their preferences. We consider two demographic attributes, i.e., gender and age, and show that DR systematically occurs. Then, we propose mitigation, which ensures that reputation is independent of the users' sensitive attributes. Experiments on real-world data show that our approach can overcome DR and also improve ranking effectiveness.

Citations (85)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.