Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Conditional GAN for MRI Brain Image Synthesis (2005.11875v2)

Published 25 May 2020 in eess.IV and cs.CV

Abstract: As a powerful technique in medical imaging, image synthesis is widely used in applications such as denoising, super resolution and modality transformation etc. Recently, the revival of deep neural networks made immense progress in the field of medical imaging. Although many deep leaning based models have been proposed to improve the image synthesis accuracy, the evaluation of the model uncertainty, which is highly important for medical applications, has been a missing part. In this work, we propose to use Bayesian conditional generative adversarial network (GAN) with concrete dropout to improve image synthesis accuracy. Meanwhile, an uncertainty calibration approach is involved in the whole pipeline to make the uncertainty generated by Bayesian network interpretable. The method is validated with the T1w to T2w MR image translation with a brain tumor dataset of 102 subjects. Compared with the conventional Bayesian neural network with Monte Carlo dropout, results of the proposed method reach a significant lower RMSE with a p-value of 0.0186. Improvement of the calibration of the generated uncertainty by the uncertainty recalibration method is also illustrated.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.