Papers
Topics
Authors
Recent
2000 character limit reached

Multi-view Alignment and Generation in CCA via Consistent Latent Encoding (2005.11716v1)

Published 24 May 2020 in cs.LG, cs.CV, and stat.ML

Abstract: Multi-view alignment, achieving one-to-one correspondence of multi-view inputs, is critical in many real-world multi-view applications, especially for cross-view data analysis problems. Recently, an increasing number of works study this alignment problem with Canonical Correlation Analysis (CCA). However, existing CCA models are prone to misalign the multiple views due to either the neglect of uncertainty or the inconsistent encoding of the multiple views. To tackle these two issues, this paper studies multi-view alignment from the Bayesian perspective. Delving into the impairments of inconsistent encodings, we propose to recover correspondence of the multi-view inputs by matching the marginalization of the joint distribution of multi-view random variables under different forms of factorization. To realize our design, we present Adversarial CCA (ACCA) which achieves consistent latent encodings by matching the marginalized latent encodings through the adversarial training paradigm. Our analysis based on conditional mutual information reveals that ACCA is flexible for handling implicit distributions. Extensive experiments on correlation analysis and cross-view generation under noisy input settings demonstrate the superiority of our model.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.