Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Sharp variance-entropy comparison for nonnegative Gaussian quadratic forms (2005.11705v4)

Published 24 May 2020 in math.PR, cs.IT, and math.IT

Abstract: In this article we study weighted sums of $n$ i.i.d. Gamma($\alpha$) random variables with nonnegative weights. We show that for $n \geq 1/\alpha$ the sum with equal coefficients maximizes differential entropy when variance is fixed. As a consequence, we prove that among nonnegative quadratic forms in $n$ independent standard Gaussian random variables, a diagonal form with equal coefficients maximizes differential entropy, under a fixed variance. This provides a sharp lower bound for the relative entropy between a nonnegative quadratic form and a Gaussian random variable. Bounds on capacities of transmission channels subject to $n$ independent additive gamma noises are also derived.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.