Papers
Topics
Authors
Recent
2000 character limit reached

Arms Race in Adversarial Malware Detection: A Survey (2005.11671v3)

Published 24 May 2020 in cs.CR and cs.LG

Abstract: Malicious software (malware) is a major cyber threat that has to be tackled with Machine Learning (ML) techniques because millions of new malware examples are injected into cyberspace on a daily basis. However, ML is vulnerable to attacks known as adversarial examples. In this paper, we survey and systematize the field of Adversarial Malware Detection (AMD) through the lens of a unified conceptual framework of assumptions, attacks, defenses, and security properties. This not only leads us to map attacks and defenses to partial order structures, but also allows us to clearly describe the attack-defense arms race in the AMD context. We draw a number of insights, including: knowing the defender's feature set is critical to the success of transfer attacks; the effectiveness of practical evasion attacks largely depends on the attacker's freedom in conducting manipulations in the problem space; knowing the attacker's manipulation set is critical to the defender's success; the effectiveness of adversarial training depends on the defender's capability in identifying the most powerful attack. We also discuss a number of future research directions.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.