Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Information-Theoretic Limits for the Matrix Tensor Product (2005.11273v2)

Published 22 May 2020 in cs.IT, math.IT, math.PR, and stat.ML

Abstract: This paper studies a high-dimensional inference problem involving the matrix tensor product of random matrices. This problem generalizes a number of contemporary data science problems including the spiked matrix models used in sparse principal component analysis and covariance estimation and the stochastic block model used in network analysis. The main results are single-letter formulas (i.e., analytical expressions that can be approximated numerically) for the mutual information and the minimum mean-squared error (MMSE) in the Bayes optimal setting where the distributions of all random quantities are known. We provide non-asymptotic bounds and show that our formulas describe exactly the leading order terms in the mutual information and MMSE in the high-dimensional regime where the number of rows $n$ and number of columns $d$ scale with $d = O(n\alpha)$ for some $\alpha < 1/20$. On the technical side, this paper introduces some new techniques for the analysis of high-dimensional matrix-valued signals. Specific contributions include a novel extension of the adaptive interpolation method that uses order-preserving positive semidefinite interpolation paths, and a variance inequality between the overlap and the free energy that is based on continuous-time I-MMSE relations.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)