Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Deploying Scientific AI Networks at Petaflop Scale on Secure Large Scale HPC Production Systems with Containers (2005.10676v1)

Published 20 May 2020 in cs.DC

Abstract: There is an ever-increasing need for computational power to train complex AI & ML models to tackle large scientific problems. High performance computing (HPC) resources are required to efficiently compute and scale complex models across tens of thousands of compute nodes. In this paper, we discuss the issues associated with the deployment of machine learning frameworks on large scale secure HPC systems and how we successfully deployed a standard machine learning framework on a secure large scale HPC production system, to train a complex three-dimensional convolutional GAN (3DGAN), with petaflop performance. 3DGAN is an example from the high energy physics domain, designed to simulate the energy pattern produced by showers of secondary particles inside a particle detector on various HPC systems.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.