Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Aggression Diffusion Modeling and Minimization in Online Social Networks (2005.10646v5)

Published 21 May 2020 in cs.SI and physics.soc-ph

Abstract: Aggression in online social networks has been studied mostly from the perspective of machine learning which detects such behavior in a static context. However, the way aggression diffuses in the network has received little attention as it embeds modeling challenges. In fact, modeling how aggression propagates from one user to another, is an important research topic since it can enable effective aggression monitoring, especially in media platforms which up to now apply simplistic user blocking techniques. In this paper, we address aggression propagation modeling and minimization on Twitter, since it is a popular microblogging platform at which aggression had several onsets. We propose various methods building on two well-known diffusion models, Independent Cascade (IC) and Linear Threshold (LT), to study the aggression evolution in the social network. We experimentally investigate how well each method can model aggression propagation using real Twitter data, while varying parameters, such as seed users selection, graph edge weighting, users' activation timing, etc. It is found that the best performing strategies are the ones to select seed users with a degree-based approach, weigh user edges based on their social circles' overlaps, and activate users according to their aggression levels. We further employ the best performing models to predict which ordinary real users could become aggressive (and vice versa) in the future, and achieve up to AUC=0.89 in this prediction task. Finally, we investigate aggression minimization by launching competitive cascades to "inform" and "heal" aggressors. We show that IC and LT models can be used in aggression minimization, providing less intrusive alternatives to the blocking techniques currently employed by popular online social network platforms.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.