Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stochastic Beamforming for Reconfigurable Intelligent Surface Aided Over-the-Air Computation (2005.10625v2)

Published 21 May 2020 in cs.IT, eess.SP, and math.IT

Abstract: Over-the-air computation (AirComp) is a promising technology that is capable of achieving fast data aggregation in Internet of Things (IoT) networks. The mean-squared error (MSE) performance of AirComp is bottlenecked by the unfavorable channel conditions. This limitation can be mitigated by deploying a reconfigurable intelligent surface (RIS), which reconfigures the propagation environment to facilitate the receiving power equalization. The achievable performance of RIS relies on the availability of accurate channel state information (CSI), which however is generally difficult to be obtained. In this paper, we consider an RIS-aided AirComp IoT network, where an access point (AP) aggregates sensing data from distributed devices. Without assuming any prior knowledge on the underlying channel distribution, we formulate a stochastic optimization problem to maximize the probability that the MSE is below a certain threshold. The formulated problem turns out to be non-convex and highly intractable. To this end, we propose a data-driven approach to jointly optimize the receive beamforming vector at the AP and the phase-shift vector at the RIS based on historical channel realizations. After smoothing the objective function by adopting the sigmoid function, we develop an alternating stochastic variance reduced gradient (SVRG) algorithm with a fast convergence rate to solve the problem. Simulation results demonstrate the effectiveness of the proposed algorithm and the importance of deploying an RIS in reducing the MSE outage probability.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.