Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

When is Approximate Counting for Conjunctive Queries Tractable? (2005.10029v3)

Published 20 May 2020 in cs.DS

Abstract: Conjunctive queries are one of the most common class of queries used in database systems, and the best studied in the literature. A seminal result of Grohe, Schwentick, and Segoufin (STOC 2001) demonstrates that for every class $G$ of graphs, the evaluation of all conjunctive queries whose underlying graph is in $G$ is tractable if, and only if, $G$ has bounded treewidth. In this work, we extend this characterization to the counting problem for conjunctive queries. Specifically, for every class $C$ of conjunctive queries with bounded treewidth, we introduce the first fully polynomial-time randomized approximation scheme (FPRAS) for counting answers to a query in $C$, and the first polynomial-time algorithm for sampling answers uniformly from a query in $C$. As a corollary, it follows that for every class $G$ of graphs, the counting problem for conjunctive queries whose underlying graph is in $G$ admits an FPRAS if, and only if, $G$ has bounded treewidth (unless $\text{BPP} \neq \text{P}$)}. In fact, our FPRAS is more general, and also applies to conjunctive queries with bounded hypertree width, as well as unions of such queries. The key ingredient in our proof is the resolution of a fundamental counting problem from automata theory. Specifically, we demonstrate the first FPRAS and polynomial time sampler for the set of trees of size $n$ accepted by a tree automaton, which improves the prior quasi-polynomial time randomized approximation scheme (QPRAS) and sampling algorithm of Gore, Jerrum, Kannan, Sweedyk, and Mahaney '97. We demonstrate how this algorithm can be used to obtain an FPRAS for many hitherto open problems, such as counting solutions to constraint satisfaction problems (CSP) with bounded hypertree-width, counting the number of error threads in programs with nested call subroutines, and counting valid assignments to structured DNNF circuits.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.