Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

On randomized trace estimates for indefinite matrices with an application to determinants (2005.10009v2)

Published 20 May 2020 in math.NA and cs.NA

Abstract: Randomized trace estimation is a popular and well studied technique that approximates the trace of a large-scale matrix $B$ by computing the average of $xT Bx$ for many samples of a random vector $X$. Often, $B$ is symmetric positive definite (SPD) but a number of applications give rise to indefinite $B$. Most notably, this is the case for log-determinant estimation, a task that features prominently in statistical learning, for instance in maximum likelihood estimation for Gaussian process regression. The analysis of randomized trace estimates, including tail bounds, has mostly focused on the SPD case. In this work, we derive new tail bounds for randomized trace estimates applied to indefinite $B$ with Rademacher or Gaussian random vectors. These bounds significantly improve existing results for indefinite $B$, reducing the the number of required samples by a factor $n$ or even more, where $n$ is the size of $B$. Even for an SPD matrix, our work improves an existing result by Roosta-Khorasani and Ascher for Rademacher vectors. This work also analyzes the combination of randomized trace estimates with the Lanczos method for approximating the trace of $f(A)$. Particular attention is paid to the matrix logarithm, which is needed for log-determinant estimation. We improve and extend an existing result, to not only cover Rademacher but also Gaussian random vectors.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.