Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Evaluating Features and Metrics for High-Quality Simulation of Early Vocal Learning of Vowels (2005.09986v2)

Published 20 May 2020 in eess.AS and cs.SD

Abstract: The way infants use auditory cues to learn to speak despite the acoustic mismatch of their vocal apparatus is a hot topic of scientific debate. The simulation of early vocal learning using articulatory speech synthesis offers a way towards gaining a deeper understanding of this process. One of the crucial parameters in these simulations is the choice of features and a metric to evaluate the acoustic error between the synthesised sound and the reference target. We contribute with evaluating the performance of a set of 40 feature-metric combinations for the task of optimising the production of static vowels with a high-quality articulatory synthesiser. Towards this end we assess the usability of formant error and the projection of the feature-metric error surface in the normalised F1-F2 formant space. We show that this approach can be used to evaluate the impact of features and metrics and also to offer insight to perceptual results.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.