Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning Representations using Spectral-Biased Random Walks on Graphs (2005.09752v2)

Published 19 May 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Several state-of-the-art neural graph embedding methods are based on short random walks (stochastic processes) because of their ease of computation, simplicity in capturing complex local graph properties, scalability, and interpretibility. In this work, we are interested in studying how much a probabilistic bias in this stochastic process affects the quality of the nodes picked by the process. In particular, our biased walk, with a certain probability, favors movement towards nodes whose neighborhoods bear a structural resemblance to the current node's neighborhood. We succinctly capture this neighborhood as a probability measure based on the spectrum of the node's neighborhood subgraph represented as a normalized laplacian matrix. We propose the use of a paragraph vector model with a novel Wasserstein regularization term. We empirically evaluate our approach against several state-of-the-art node embedding techniques on a wide variety of real-world datasets and demonstrate that our proposed method significantly improves upon existing methods on both link prediction and node classification tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.