Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 168 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Cooperative Navigation Using Pairwise Communication with Ranging and Magnetic Anomaly Measurements (2005.09541v2)

Published 19 May 2020 in eess.SY and cs.SY

Abstract: The problem of cooperative localization for a small group of Unmanned Aerial Vehicles (UAVs) in a GNSS denied environment is addressed in this paper. The presented approach contains two sequential steps: first, an algorithm called cooperative ranging localization, formulated as an Extended Kalman Filter (EKF), estimates each UAV's relative pose inside the group using inter-vehicle ranging measurements; second, an algorithm named cooperative magnetic localization, formulated as a particle filter, estimates each UAV's global pose through matching the group's magnetic anomaly measurements to a given magnetic anomaly map. In this study, each UAV is assumed to only perform a ranging measurement and data exchange with one other UAV at any point in time. A simulator is developed to evaluate the algorithms with magnetic anomaly maps acquired from airborne geophysical survey. The simulation results show that the average estimated position error of a group of 16 UAVs is approximately 20 meters after flying about 180 kilometers in 1 hour. Sensitivity analysis shows that the algorithms can tolerate large variations of velocity, yaw rate, and magnetic anomaly measurement noises. Additionally, the UAV group shows improved position estimation robustness with both high and low resolution maps as more UAVs are added into the group.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.