Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Iterative Pseudo-Labeling for Speech Recognition (2005.09267v2)

Published 19 May 2020 in cs.CL, cs.SD, and eess.AS

Abstract: Pseudo-labeling has recently shown promise in end-to-end automatic speech recognition (ASR). We study Iterative Pseudo-Labeling (IPL), a semi-supervised algorithm which efficiently performs multiple iterations of pseudo-labeling on unlabeled data as the acoustic model evolves. In particular, IPL fine-tunes an existing model at each iteration using both labeled data and a subset of unlabeled data. We study the main components of IPL: decoding with a LLM and data augmentation. We then demonstrate the effectiveness of IPL by achieving state-of-the-art word-error rate on the Librispeech test sets in both standard and low-resource setting. We also study the effect of LLMs trained on different corpora to show IPL can effectively utilize additional text. Finally, we release a new large in-domain text corpus which does not overlap with the Librispeech training transcriptions to foster research in low-resource, semi-supervised ASR

Citations (128)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.