Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 31 tok/s Pro
2000 character limit reached

An Analysis of the Adaptation Speed of Causal Models (2005.09136v2)

Published 18 May 2020 in stat.ML and cs.LG

Abstract: Consider a collection of datasets generated by unknown interventions on an unknown structural causal model $G$. Recently, Bengio et al. (2020) conjectured that among all candidate models, $G$ is the fastest to adapt from one dataset to another, along with promising experiments. Indeed, intuitively $G$ has less mechanisms to adapt, but this justification is incomplete. Our contribution is a more thorough analysis of this hypothesis. We investigate the adaptation speed of cause-effect SCMs. Using convergence rates from stochastic optimization, we justify that a relevant proxy for adaptation speed is distance in parameter space after intervention. Applying this proxy to categorical and normal cause-effect models, we show two results. When the intervention is on the cause variable, the SCM with the correct causal direction is advantaged by a large factor. When the intervention is on the effect variable, we characterize the relative adaptation speed. Surprisingly, we find situations where the anticausal model is advantaged, falsifying the initial hypothesis. Code to reproduce experiments is available at https://github.com/remilepriol/causal-adaptation-speed

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com