Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Technique Combining Image Processing, Plant Development Properties, and the Hungarian Algorithm, to Improve Leaf Detection in Maize (2005.09022v1)

Published 18 May 2020 in cs.CV

Abstract: Manual determination of plant phenotypic properties such as plant architecture, growth, and health is very time consuming and sometimes destructive. Automatic image analysis has become a popular approach. This research aims to identify the position (and number) of leaves from a temporal sequence of high-quality indoor images consisting of multiple views, focussing in particular of images of maize. The procedure used a segmentation on the images, using the convex hull to pick the best view at each time step, followed by a skeletonization of the corresponding image. To remove skeleton spurs, a discrete skeleton evolution pruning process was applied. Pre-existing statistics regarding maize development was incorporated to help differentiate between true leaves and false leaves. Furthermore, for each time step, leaves were matched to those of the previous and next three days using the graph-theoretic Hungarian algorithm. This matching algorithm can be used to both remove false positives, and also to predict true leaves, even if they were completely occluded from the image itself. The algorithm was evaluated using an open dataset consisting of 13 maize plants across 27 days from two different views. The total number of true leaves from the dataset was 1843, and our proposed techniques detect a total of 1690 leaves including 1674 true leaves, and only 16 false leaves, giving a recall of 90.8%, and a precision of 99.0%.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nazifa Khan (1 paper)
  2. Oliver A. S. Lyon (1 paper)
  3. Mark Eramian (4 papers)
  4. Ian McQuillan (30 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.