Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Joint Multi-Dimension Pruning via Numerical Gradient Update (2005.08931v2)

Published 18 May 2020 in cs.CV, cs.LG, and eess.IV

Abstract: We present joint multi-dimension pruning (abbreviated as JointPruning), an effective method of pruning a network on three crucial aspects: spatial, depth and channel simultaneously. To tackle these three naturally different dimensions, we proposed a general framework by defining pruning as seeking the best pruning vector (i.e., the numerical value of layer-wise channel number, spacial size, depth) and construct a unique mapping from the pruning vector to the pruned network structures. Then we optimize the pruning vector with gradient update and model joint pruning as a numerical gradient optimization process. To overcome the challenge that there is no explicit function between the loss and the pruning vectors, we proposed self-adapted stochastic gradient estimation to construct a gradient path through network loss to pruning vectors and enable efficient gradient update. We show that the joint strategy discovers a better status than previous studies that focused on individual dimensions solely, as our method is optimized collaboratively across the three dimensions in a single end-to-end training and it is more efficient than the previous exhaustive methods. Extensive experiments on large-scale ImageNet dataset across a variety of network architectures MobileNet V1&V2&V3 and ResNet demonstrate the effectiveness of our proposed method. For instance, we achieve significant margins of 2.5% and 2.6% improvement over the state-of-the-art approach on the already compact MobileNet V1&V2 under an extremely large compression ratio.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.