On the real Davies' conjecture (2005.08908v2)
Abstract: We show that every matrix $A \in \mathbb{R}{n\times n}$ is at least $\delta$$|A|$-close to a real matrix $A+E \in \mathbb{R}{n\times n}$ whose eigenvectors have condition number at most $\tilde{O}_{n}(\delta{-1})$. In fact, we prove that, with high probability, taking $E$ to be a sufficiently small multiple of an i.i.d. real sub-Gaussian matrix of bounded density suffices. This essentially confirms a speculation of Davies, and of Banks, Kulkarni, Mukherjee, and Srivastava, who recently proved such a result for i.i.d. complex Gaussian matrices. Along the way, we also prove non-asymptotic estimates on the minimum possible distance between any two eigenvalues of a random matrix whose entries have arbitrary means; this part of our paper may be of independent interest.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.