Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A Semantically Enriched Dataset based on Biomedical NER for the COVID19 Open Research Dataset Challenge (2005.08823v1)

Published 18 May 2020 in cs.DL

Abstract: Research into COVID-19 is a big challenge and highly relevant at the moment. New tools are required to assist medical experts in their research with relevant and valuable information. The COVID-19 Open Research Dataset Challenge (CORD-19) is a "call to action" for computer scientists to develop these innovative tools. Many of these applications are empowered by entity information, i. e. knowing which entities are used within a sentence. For this paper, we have developed a pipeline upon the latest Named Entity Recognition tools for Chemicals, Diseases, Genes and Species. We apply our pipeline to the COVID-19 research challenge and share the resulting entity mentions with the community.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.