Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Cyclical Post-filtering Approach to Mismatch Refinement of Neural Vocoder for Text-to-speech Systems (2005.08659v2)

Published 18 May 2020 in eess.AS and cs.SD

Abstract: Recently, the effectiveness of text-to-speech (TTS) systems combined with neural vocoders to generate high-fidelity speech has been shown. However, collecting the required training data and building these advanced systems from scratch are time and resource consuming. An economical approach is to develop a neural vocoder to enhance the speech generated by existing or low-cost TTS systems. Nonetheless, this approach usually suffers from two issues: 1) temporal mismatches between TTS and natural waveforms and 2) acoustic mismatches between training and testing data. To address these issues, we adopt a cyclic voice conversion (VC) model to generate temporally matched pseudo-VC data for training and acoustically matched enhanced data for testing the neural vocoders. Because of the generality, this framework can be applied to arbitrary TTS systems and neural vocoders. In this paper, we apply the proposed method with a state-of-the-art WaveNet vocoder for two different basic TTS systems, and both objective and subjective experimental results confirm the effectiveness of the proposed framework.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube