Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Cyclical Post-filtering Approach to Mismatch Refinement of Neural Vocoder for Text-to-speech Systems (2005.08659v2)

Published 18 May 2020 in eess.AS and cs.SD

Abstract: Recently, the effectiveness of text-to-speech (TTS) systems combined with neural vocoders to generate high-fidelity speech has been shown. However, collecting the required training data and building these advanced systems from scratch are time and resource consuming. An economical approach is to develop a neural vocoder to enhance the speech generated by existing or low-cost TTS systems. Nonetheless, this approach usually suffers from two issues: 1) temporal mismatches between TTS and natural waveforms and 2) acoustic mismatches between training and testing data. To address these issues, we adopt a cyclic voice conversion (VC) model to generate temporally matched pseudo-VC data for training and acoustically matched enhanced data for testing the neural vocoders. Because of the generality, this framework can be applied to arbitrary TTS systems and neural vocoders. In this paper, we apply the proposed method with a state-of-the-art WaveNet vocoder for two different basic TTS systems, and both objective and subjective experimental results confirm the effectiveness of the proposed framework.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.