Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Decoder Modulation for Indoor Depth Completion (2005.08607v2)

Published 18 May 2020 in cs.CV

Abstract: Depth completion recovers a dense depth map from sensor measurements. Current methods are mostly tailored for very sparse depth measurements from LiDARs in outdoor settings, while for indoor scenes Time-of-Flight (ToF) or structured light sensors are mostly used. These sensors provide semi-dense maps, with dense measurements in some regions and almost empty in others. We propose a new model that takes into account the statistical difference between such regions. Our main contribution is a new decoder modulation branch added to the encoder-decoder architecture. The encoder extracts features from the concatenated RGB image and raw depth. Given the mask of missing values as input, the proposed modulation branch controls the decoding of a dense depth map from these features differently for different regions. This is implemented by modifying the spatial distribution of output signals inside the decoder via Spatially-Adaptive Denormalization (SPADE) blocks. Our second contribution is a novel training strategy that allows us to train on a semi-dense sensor data when the ground truth depth map is not available. Our model achieves the state of the art results on indoor Matterport3D dataset. Being designed for semi-dense input depth, our model is still competitive with LiDAR-oriented approaches on the KITTI dataset. Our training strategy significantly improves prediction quality with no dense ground truth available, as validated on the NYUv2 dataset.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube