Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Architecture Enhancing Robustness to Noise, Adversarial Attacks, and Cross-corpus Setting for Speech Emotion Recognition (2005.08453v3)

Published 18 May 2020 in cs.SD and eess.AS

Abstract: Speech emotion recognition systems (SER) can achieve high accuracy when the training and test data are identically distributed, but this assumption is frequently violated in practice and the performance of SER systems plummet against unforeseen data shifts. The design of robust models for accurate SER is challenging, which limits its use in practical applications. In this paper we propose a deeper neural network architecture wherein we fuse DenseNet, LSTM and Highway Network to learn powerful discriminative features which are robust to noise. We also propose data augmentation with our network architecture to further improve the robustness. We comprehensively evaluate the architecture coupled with data augmentation against (1) noise, (2) adversarial attacks and (3) cross-corpus settings. Our evaluations on the widely used IEMOCAP and MSP-IMPROV datasets show promising results when compared with existing studies and state-of-the-art models.

Citations (26)

Summary

We haven't generated a summary for this paper yet.