Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Comparative Exploration of ML Techniques for Tuning Query Degree of Parallelism (2005.08439v2)

Published 18 May 2020 in cs.DB

Abstract: There is a large body of recent work applying ML techniques to query optimization and query performance prediction in relational database management systems (RDBMSs). However, these works typically ignore the effect of \textit{intra-parallelism} -- a key component used to boost the performance of OLAP queries in practice -- on query performance prediction. In this paper, we take a first step towards filling this gap by studying the problem of \textit{tuning the degree of parallelism (DOP) via ML techniques} in Microsoft SQL Server, a popular commercial RDBMS that allows an individual query to execute using multiple cores. In our study, we cast the problem of DOP tuning as a {\em regression} task, and examine how several popular ML models can help with query performance prediction in a multi-core setting. We explore the design space and perform an extensive experimental study comparing different models against a list of performance metrics, testing how well they generalize in different settings: $(i)$ to queries from the same template, $(ii)$ to queries from a new template, $(iii)$ to instances of different scale, and $(iv)$ to different instances and queries. Our experimental results show that a simple featurization of the input query plan that ignores cost model estimations can accurately predict query performance, capture the speedup trend with respect to the available parallelism, as well as help with automatically choosing an optimal per-query DOP.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube