Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SGDN: Segmentation-Based Grasp Detection Network For Unsymmetrical Three-Finger Gripper (2005.08222v1)

Published 17 May 2020 in cs.RO

Abstract: In this paper, we present Segmentation-Based Grasp Detection Network (SGDN) to predict a feasible robotic grasping for a unsymmetrical three-finger robotic gripper using RGB images. The feasible grasping of a target should be a collection of grasp regions with the same grasp angle and width. In other words, a simplified planar grasp representation should be pixel-level rather than region-level such as five-dimensional grasp representation.Therefore, we propose a pixel-level grasp representation, oriented base-fixed triangle. It is also more suitable for unsymmetrical three-finger gripper which cannot grasp symmetrically when grasping some objects, the grasp angle is at [0, 2{\pi}) instead of [0, {\pi}) of parallel plate gripper.In order to predict the appropriate grasp region and its corresponding grasp angle and width in the RGB image, SGDN uses DeepLabv3+ as a feature extractor, and uses a three-channel grasp predictor to predict feasible oriented base-fixed triangle grasp representation of each pixel.On the re-annotated Cornell Grasp Dataset, our model achieves an accuracy of 96.8% and 92.27% on image-wise split and object-wise split respectively, and obtains accurate predictions consistent with the state-of-the-art methods.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)