Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Learning and Optimization with Seasonal Patterns (2005.08088v4)

Published 16 May 2020 in cs.LG and stat.ML

Abstract: A standard assumption adopted in the multi-armed bandit (MAB) framework is that the mean rewards are constant over time. This assumption can be restrictive in the business world as decision-makers often face an evolving environment where the mean rewards are time-varying. In this paper, we consider a non-stationary MAB model with $K$ arms whose mean rewards vary over time in a periodic manner. The unknown periods can be different across arms and scale with the length of the horizon $T$ polynomially. We propose a two-stage policy that combines the Fourier analysis with a confidence-bound-based learning procedure to learn the periods and minimize the regret. In stage one, the policy correctly estimates the periods of all arms with high probability. In stage two, the policy explores the periodic mean rewards of arms using the periods estimated in stage one and exploits the optimal arm in the long run. We show that our learning policy incurs a regret upper bound $\tilde{O}(\sqrt{T\sum_{k=1}K T_k})$ where $T_k$ is the period of arm $k$. Moreover, we establish a general lower bound $\Omega(\sqrt{T\max_{k}{ T_k}})$ for any policy. Therefore, our policy is near-optimal up to a factor of $\sqrt{K}$.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.