Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

A Robust Experimental Evaluation of Automated Multi-Label Classification Methods (2005.08083v2)

Published 16 May 2020 in cs.LG, cs.AI, and cs.NE

Abstract: Automated Machine Learning (AutoML) has emerged to deal with the selection and configuration of algorithms for a given learning task. With the progression of AutoML, several effective methods were introduced, especially for traditional classification and regression problems. Apart from the AutoML success, several issues remain open. One issue, in particular, is the lack of ability of AutoML methods to deal with different types of data. Based on this scenario, this paper approaches AutoML for multi-label classification (MLC) problems. In MLC, each example can be simultaneously associated to several class labels, unlike the standard classification task, where an example is associated to just one class label. In this work, we provide a general comparison of five automated multi-label classification methods -- two evolutionary methods, one Bayesian optimization method, one random search and one greedy search -- on 14 datasets and three designed search spaces. Overall, we observe that the most prominent method is the one based on a canonical grammar-based genetic programming (GGP) search method, namely Auto-MEKA${GGP}$. Auto-MEKA${GGP}$ presented the best average results in our comparison and was statistically better than all the other methods in different search spaces and evaluated measures, except when compared to the greedy search method.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.