Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Differentially Private ADMM for Convex Distributed Learning: Improved Accuracy via Multi-Step Approximation (2005.07890v1)

Published 16 May 2020 in cs.LG, cs.CR, cs.DC, and stat.ML

Abstract: Alternating Direction Method of Multipliers (ADMM) is a popular algorithm for distributed learning, where a network of nodes collaboratively solve a regularized empirical risk minimization by iterative local computation associated with distributed data and iterate exchanges. When the training data is sensitive, the exchanged iterates will cause serious privacy concern. In this paper, we aim to propose a new differentially private distributed ADMM algorithm with improved accuracy for a wide range of convex learning problems. In our proposed algorithm, we adopt the approximation of the objective function in the local computation to introduce calibrated noise into iterate updates robustly, and allow multiple primal variable updates per node in each iteration. Our theoretical results demonstrate that our approach can obtain higher utility by such multiple approximate updates, and achieve the error bounds asymptotic to the state-of-art ones for differentially private empirical risk minimization.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.