Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Binary Hypothesis Testing with Deterministic Finite-Memory Decision Rules (2005.07445v1)

Published 15 May 2020 in cs.IT and math.IT

Abstract: In this paper we consider the problem of binary hypothesis testing with finite memory systems. Let $X_1,X_2,\ldots$ be a sequence of independent identically distributed Bernoulli random variables, with expectation $p$ under $\mathcal{H}0$ and $q$ under $\mathcal{H}_1$. Consider a finite-memory deterministic machine with $S$ states that updates its state $M_n \in {1,2,\ldots,S}$ at each time according to the rule $M_n = f(M{n-1},X_n)$, where $f$ is a deterministic time-invariant function. Assume that we let the process run for a very long time ($n\rightarrow \infty)$, and then make our decision according to some mapping from the state space to the hypothesis space. The main contribution of this paper is a lower bound on the Bayes error probability $P_e$ of any such machine. In particular, our findings show that the ratio between the maximal exponential decay rate of $P_e$ with $S$ for a deterministic machine and for a randomized one, can become unbounded, complementing a result by Hellman.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.