Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

WG-WaveNet: Real-Time High-Fidelity Speech Synthesis without GPU (2005.07412v3)

Published 15 May 2020 in eess.AS and cs.SD

Abstract: In this paper, we propose WG-WaveNet, a fast, lightweight, and high-quality waveform generation model. WG-WaveNet is composed of a compact flow-based model and a post-filter. The two components are jointly trained by maximizing the likelihood of the training data and optimizing loss functions on the frequency domains. As we design a flow-based model that is heavily compressed, the proposed model requires much less computational resources compared to other waveform generation models during both training and inference time; even though the model is highly compressed, the post-filter maintains the quality of generated waveform. Our PyTorch implementation can be trained using less than 8 GB GPU memory and generates audio samples at a rate of more than 960 kHz on an NVIDIA 1080Ti GPU. Furthermore, even if synthesizing on a CPU, we show that the proposed method is capable of generating 44.1 kHz speech waveform 1.2 times faster than real-time. Experiments also show that the quality of generated audio is comparable to those of other methods. Audio samples are publicly available online.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)