Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Variational Inference as Iterative Projection in a Bayesian Hilbert Space with Application to Robotic State Estimation (2005.07275v3)

Published 14 May 2020 in cs.LG, cs.RO, and stat.ML

Abstract: Variational Bayesian inference is an important machine-learning tool that finds application from statistics to robotics. The goal is to find an approximate probability density function (PDF) from a chosen family that is in some sense 'closest' to the full Bayesian posterior. Closeness is typically defined through the selection of an appropriate loss functional such as the Kullback-Leibler (KL) divergence. In this paper, we explore a new formulation of variational inference by exploiting the fact that (most) PDFs are members of a Bayesian Hilbert space under careful definitions of vector addition, scalar multiplication and an inner product. We show that, under the right conditions, variational inference based on KL divergence can amount to iterative projection, in the Euclidean sense, of the Bayesian posterior onto a subspace corresponding to the selected approximation family. We work through the details of this general framework for the specific case of the Gaussian approximation family and show the equivalence to another Gaussian variational inference approach. We furthermore discuss the implications for systems that exhibit sparsity, which is handled naturally in Bayesian space, and give an example of a high-dimensional robotic state estimation problem that can be handled as a result. We provide some preliminary examples of how the approach could be applied to non-Gaussian inference and discuss the limitations of the approach in detail to encourage follow-on work along these lines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.