Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Reconstruction-Computation-Quantization (RCQ) Approach to Node Operations in LDPC Decoding (2005.07259v1)

Published 14 May 2020 in eess.SP, cs.IT, and math.IT

Abstract: In this paper, we propose a finite-precision decoding method that features the three steps of Reconstruction, Computation, and Quantization (RCQ). Unlike Mutual-Information-Maximization Quantized Belief Propagation (MIM-QBP), RCQ can approximate either belief propagation or Min-Sum decoding. One problem faced by MIM-QBP decoder is that it cannot work well when the fraction of degree-2 variable nodes is large. However, sometimes a large fraction of degree-2 variable nodes is necessary for a fast encoding structure, as seen in the IEEE 802.11 standard and the DVB-S2 standard. In contrast, the proposed RCQ decoder may be applied to any off-the-shelf LDPC code, including those with a large fraction of degree-2 variable nodes.Our simulations show that a 4-bit Min-Sum RCQ decoder delivers frame error rate (FER) performance around 0.1dB of full-precision belief propagation (BP) for the IEEE 802.11 standard LDPC code in the low SNR region.The RCQ decoder actually outperforms full-precision BP in the high SNR region because it overcomes elementary trapping sets that create an error floor under BP decoding. This paper also introduces Hierarchical Dynamic Quantization (HDQ) to design the non-uniform quantizers required by RCQ decoders. HDQ is a low-complexity design technique that is slightly sub-optimal. Simulation results comparing HDQ and an optimal quantizer on the symmetric binary-input memoryless additive white Gaussian noise channel show a loss in mutual information between these two quantizers of less than $10{-6}$ bits, which is negligible for practical applications.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.