Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Uniformly High-Order Structure-Preserving Discontinuous Galerkin Methods for Euler Equations with Gravitation: Positivity and Well-Balancedness (2005.07166v1)

Published 14 May 2020 in math.NA, astro-ph.IM, cs.NA, physics.comp-ph, and physics.flu-dyn

Abstract: This paper presents a class of novel high-order accurate discontinuous Galerkin (DG) schemes for the compressible Euler equations under gravitational fields. A notable feature of these schemes is that they are well-balanced for a general hydrostatic equilibrium state, and at the same time, provably preserve the positivity of density and pressure. In order to achieve the well-balanced and positivity-preserving properties simultaneously, a novel DG spatial discretization is carefully designed with suitable source term reformulation and a properly modified Harten-Lax-van Leer contact (HLLC) flux. Based on some technical decompositions as well as several key properties of the admissible states and HLLC flux, rigorous positivity-preserving analyses are carried out. It is proven that the resulting well-balanced DG schemes, coupled with strong stability preserving time discretizations, satisfy a weak positivity property, which implies that one can apply a simple existing limiter to effectively enforce the positivity-preserving property, without losing high-order accuracy and conservation. The proposed methods and analyses are applicable to the Euler system with general equation of state. Extensive one- and two-dimensional numerical tests demonstrate the desired properties of these schemes, including the exact preservation of the equilibrium state, the ability to capture small perturbation of such state, the robustness for solving problems involving low density and/or low pressure, and good resolution for smooth and discontinuous solutions.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)