Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Using Bayesian Optimization to Accelerate Virtual Screening for the Discovery of Therapeutics Appropriate for Repurposing for COVID-19 (2005.07121v1)

Published 11 May 2020 in q-bio.BM, cs.LG, and q-bio.QM

Abstract: The novel Wuhan coronavirus known as SARS-CoV-2 has brought almost unprecedented effects for a non-wartime setting, hitting social, economic and health systems hard.~ Being able to bring to bear pharmaceutical interventions to counteract its effects will represent a major turning point in the fight to turn the tides in this ongoing battle.~ Recently, the World's most powerful supercomputer, SUMMIT, was used to identify existing small molecule pharmaceuticals which may have the desired activity against SARS-CoV-2 through a high throughput virtual screening approach. In this communication, we demonstrate how the use of Bayesian optimization can provide a valuable service for the prioritisation of these calculations, leading to the accelerated identification of high-performing candidates, and thus expanding the scope of the utility of HPC systems for time critical screening

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.